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1. Phys. A Math. Gen. 26 (1993) 4355-4369. Printed in the UK 

Unitary highest weight representation of Uq(su(l,l)) when q 
is a root of unity 

T Matsuzaki and T Suzukit 
Institute of Physics, University of Tsukuba, Ibaraki 305, Japan 

Received 21 September 1992 

Abstract. Unitary representation of Uq(su(l,l)) with q being roots of unity are studied. 
We construct unitary irreducible highest weight modules and find that the representntiom 
are discrete series ouing to the unitarity. Moreover, it is revealed that each unitary 
irreducible highest weight module is equivalent to the tensor product of two modules. We 
show that one of them is just the unitary irreducible highest weight module ofsu(1,l) and 
the other is the same as that of Uq(su(Z)). It is also shown that the number of the Latter 
modules is finite in our representation. 

1. Introduction 

Quantum groups have been playing important roles in recent developments of 
mathematical physics. They emerged initially in studying Yang-Baxter equations and 
quantum inverse scattering in statistical models [l,2]. Quantum groups or quantum 
deformations of universal enveloping algebras provide rich algebraic structures for the 
Yang-Baxter equations in the exactly solvable models, knot theory and so on. This is 
the origin of integrability. Most remarkable developments have been made in its 
connection with two-dimensional solvable models, rational conformal field theory 
(RCFT) 13-10], RCFT is characterized by a finite number of primary fields with respect 
to some chiral algebra. Well known examples are provided by the models of Virasoro 
minimal series 1111, and unitary series [12] and Wess-Zumino-Witten (wzw) models 
whose chiral algebra is the Kac-Moody algebra [13]. The quantum group structure 
appears in these models through the quasi-triangularity of the Hopf algebra. In each 
model of RCFT, there is a parameter which characterizes the model. The parameter of 
a model and the deformation parameter of the quantum group which corresponds to 
the model are linked together by some relation. The central charge c= 1 - 6/m(m + 1) 
which is the parameter characterizing unitary minimal series are related with the 
deformationparameterqof V,(su(Z)) bytherelationq= exp(22im/(m -t 1))[14].Onthe 
other hand, $(2), wzw model whose model-dependent parameter is the level k is 
connected to quantum group U,(su(2)) by the relation q = exp ( M / ( k  + 2)). The 
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essential point is that these deformation parameters of compact quantum groups are 
roots of unity. Thus special interest for physicists lies in the quantum groups with q 
being a root of unity. Mathematically it is well-known that the representation thcory 
for a quantum universal enveloping algebra when q is a root of unity is drastically 
different from the classical one (151. 

In contrast to the powerful investigations of compact quantum groups, little 
attention has been paid to non-compact quantum groups. As for the non-compact 
quantum groups, unitary representations of SU,,(l,l) when q is not a root of unity has 
been made in [16]. The authors of [17] have given a representation of Uq(su(l,l)) in 
terms of quasi-primary fields and discussed quantum Ward identities which are 
satisfied by correlation functions of the fields. However, as in the case of compact 
quantum groups, it would be expected that representations when 4 is a root of unity 
are essential for physics. In this paper, we will give an unitary highest weight 
representation of q-deformed universal enveloping algebra U,(su(l ,I)) when q is a 
root of unity. 

Let us review here a highest weight representation of the classical Lie algebra 
sl(2, R)-su(1,l)  which is generated by Lo, L, , .  The representation is discrete series 
where Lo eigenvalue of the highest weight state takes values h = 1, a, . . . . Unitarity of 
the representation puts restriction on the value of h to be h > 4 and the fact that h must 
be a half-integer comes from the single-valuedness of the actions of SL(2, R) group 
rather than Lie algebra d(2, R)  on a vector space of representation. 

For quantum groups, however, we have only the universal enveloping algebra 
U&u(I,l)) in hand. Are the highest weight representations discrete series? To what 
extent are they unitary? The aim of this paper is to answer these questions. We will 
construct unitary highest weight module when q is a root of unity. It will be turned out 
that, as far as we require the norms of states to be positive and finite, the unitary 
irreducible highest weight modules should be characterized by two integers, that is, 
the representations are discrete series, although the values of highest weights are no 
longer half-integers. We will investigate the two-parameter structure of the unitary 
module and find that the module is isomorphic to a tensor product of two unitary 
modules. One of the modules is the module on which the classical Lie algebrasu(1,l) 
acts. The quantum group natures appear only in the other module. The remark- 
able point is that the latter module is fmite dimensional, that is, the number of 
highest weight states is finite owing to the unitarity. Furthermore, each unitary irre- 
ducible highest weight module consists of finite number of states. It will be turned 
out that these modules are nothing but the unitary irreducible highest weight 
modules of Uq(su(2))! Thus the non-compact nature appears only in the former 
one. 

This paper is organized as follows: in section 2, we present a brief introduction of 
U&(l,l)) and its highest weight representation. In section 3, we go on to the 
construction of irreducible highest weight representation when q is a root of unity. 
Here we will see that there should be zero-norm in a highest weight module so that the 
norms of all the states in the module may be finite and the requirement of the 
appearance of the zero-norm states makes the highest weight representation discrete 
series. The highest weight module, however, is no longer irreducible because zero- 
norm states cause submodules. We construct an irreducible highest weight module by 
subtructing the submodules. Section 4 is devoted to the discussions of unitarity of the 
module. The meaning of the two-parameter structure which appeared in section 3 will 
become clear in section 5. We conclude in section 6. 
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2. Uq(su(l,l)) and its highest weight representation 

Let us first summarize the q-deformation of the universal enveloping algebra of 
su( l , l ) ,  Uq(su(l , l ) ) ,  when the deformation parameter q is generic. 

Definition 1. The algebra is defined by the following generators and relations; 

Generators: gI, 9L1, 32, SI-' 

%-.-SI-* 

4-4-' 
Relations: [gI, 2-J = 

~*'SI"' 'X%*, (2.3) 
if we put X = P .  then these relations (2.2) reduce to those of algebra su(1,l); 
[L, ,L,]=(n-m)L,+, .  n , m = f l , O ,  in the classical limit q - t l .  Uq(su(l , l ) )  is 
equipped with a structure of Hopf algebra, i.e. bi-algebra with anti-pode: 
(i) co-product A: Uq+ U,@ U, is an algebra homomorphism satisfying 

(ii) co-unit E :  U,+C 

@e,') = 0 &(X) = 1 (2.5) 

y(%*,) = -q y(SC)=SIP. (2.6) 

(iii).anti-pode y: U,+ Uq is an anti-homomorphism such that 

At this stage it is worth mentioning the difference between Uq(su(2)) and 
Uq(su(l , l ) ) .  The difference between these two lies only in the relation (2.2). the 
commutation relations between SI and 2*,* of Uq(su(2)) are %JC=q"Y19~l. The 
difference affects the structure of the representation space, namely, whether it is 
compact or not. 

Let us study highest weight representation of U,(su(l,l)). The highest weight 
representation is characterized by an %,eigenvalue h, which iscalled a highest weight. 
The representation space V, ,  we will refer to it as a highest weight module, is 
constructed by acting %-, on the highest weight state Ih; O), which is defined by 

Xl(h;  0) = 0 

3llh; 0) =a"p; 0). 

As far as q is not a root of unity, the highest weight state is characterized by these 
equations completely. The moduie V ,  consists of an infinite numbers of descendants 
1h;r) ( rEN)  which is defined by 

where we use the notation of q-integer [A] 

(2.9) 

(2.10) 

*For U,(su(Z)), notation P and H are usually used instead of 2?*, and Z0, respectively. 
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This convention for a q-integer is convenient for the later use in the sense that [A] ER,  
VA E R  when 141 = 1. Using (2.9), the actions of g1, on a state Ih; r)  are easily 
obtained as follows: 

T Matsuzaki and T Suruki 

%Jh; r )=  [2h+r-  11 [h; r -  1 )  (2.11) 

%,Jh;r )=[ r+  I ] J h ; r + l ) .  (2.12) 
Therefore 9, and %-, act on the module V,, as a lowering operator and a raising 
operator, respectively. The norm of the state Ih; r)  is defined as an inner product 
JJlh; .)/I2= (h; rlh; r) with respect to ;-conjugation: 

t: Ih; r)+ (Ih; r))+= (h; rl E vi,. 
The following proposition gives consistent t-conjugations for non-compact quan- 

tum universal enveloping algebra U,(su(l , l)) .  
Proposifion 2. There exists consistent ?-conjugations with the relations (2.2) and (2.3) 
of U&u(l , l ) )  if and only if q is real or 141 = 1 .  The corresponding f-conjugations are 
given as follows: 

(1) x + = x ,  9% =%, 
(2) Yt?=x-1, Y*] =%e,, 

when q E R\{O} 
when )q) = 1 .  

Using the definition of ?-conjugation and relations of U&u(l,l)), we obtain the norm 
of the state Ih; r)  as, 

(2.13) 

where we use the notation 

and the normalization (h;Olh;0)=1. When q is generic, i.e. qER\{O, fl}, all the 
states in the highest weight module v h  with values h = l ,  4 ,  2, . . . have positive 
definite norms and V ,  has no submodule except for 0 and Vh itself, that is, Vh is a 
unitary irreducible highest weight module. This structure is the same as the classical 
one. 

In the case that q is a root of unity, the situation is drastically different. It is 
worthwhile to give brief observations what happens in this case, especially q is a 
primitive mth root of unity. In order to define a universal enveloping algebra in the 
case q"= 1, further generators should be added io (2.1) and, therefore, the condition 
given in (2.7) is not sufficient to judge a state to be a highest weight state. 
Furthermore, the relation (2.8) is not sufficient to measure the weight of Ih; 0) hecause 
of periodicity of qh under h-+h+km. Therefore, we will add another condition to 
(2.7) and change the relation (2.8) in order to specify a highest weight module. The 
structure of the highest weight module is also different. The norm of a state can be 
either negative or null. The finiteness of norms of all the states in a module requires 
existence of zero-norm states in the module. Some of these zero-norm states which are 
also highest weight states are called null states. That is to say, the null state is a highest 
weight state with zero-norm. Each null state causes a submodule and, therefore, the 
highest weight module is no longer irreducible. We will discuss details in the following 
sections. 
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3. Highest weight module with q being a root of unity 

In this section, we try to construct an irreducible highest weight module when q is a 
root of unity without discussion of unitarity. Hereafter we set q=e"""'"' ( m z n ) ,  
where m and n are positive integer and they are co-prime. 

In this case, q" = ( - )" and then [m] = 0. Because of this, the norm of the mth state 
lllh; m)lr diverges unless there exist an integer p ( p G m )  satisfying 

[2h+pc-l]=0 ( 3 4  
The equation (3.1) leads to the following proposition: 

Proposition 3. The highest weight h is labelled by two integersp and as follows; 

,"='(E 2 8  v - p  + 1) 

where p = 1,2, , . . , m and v E N .  Then it satisfies the relation 

[%,"+p- 11 =o. (3.3) 
In the rest of this paper, we will impose the condition v > ( n / m ) ( p -  l ) ,  since we are 
discussing highest weight representations, i.e., h,,> 0, rather than lowest weight 
representations, i.e. h,,<O. Is there a possibility that the values of the highest weight 
hPv are the same for different values of p and Y? In order to answer this question, the 
fact that the maximal value of p is restricted to m is crucial. Indeed, if 1 Gp, p' G m  
and v ,  Y'  EN, then the identification h,"= h,... holds if and only if p =,U' and v = v'. 
Proposition 3 suggests that we need two pieces of information to specify the highest 
weight state completely. 

Let us begin to construct the highest weight module V,, which is built on the 
highest weight state lhNv; 0). First of all, as was suggested in the last paragraph of the 
previous section, we should redefine the highest weight module when q=e"'"'". It is 
easily seen that 2 Y l  acts on Vh as a null operator, that is, 5?11fi)=0 for Vl8)f)~ V,. 
Similarly. 27 is also null operator on V ,  owing to the relation (3.1). However, 
Lt?;,/[m]! are not. Therefore we have to add 2Tl/[m]! to the generators of 
U&u(l, 1)). Furthermore, (3.2) indicates that we cannot measure the weight in terms 
of (2.8). Indeed, the v dependence of the X eigenvalue $w appears only through the 
sign factor (-)". On the other hand, the operator Yo is enough to measure the weight 
completely. Hence, we redefine the highest, weight module as follows. 

Dc$nirion 4. When q = e*(""), the highest weight module V,, on the highest weight 
state /hPv; 0) is 

V,r={lhsv;r)lr=O, 1 , 2 , ,  . .} 
such that 

% Ze,lh,".; 0) = - Ih ' 0) = 0 
[m]! "' (3.4) 

3oIh,i 0) = h,Ah,.; 0). (3.5) 
In the following, we divide our discussions into two cases, (i) 1GpSm- 1 andp =m, 
because the modules in the case (i) have zero-norm states but those in case (ii) do not. 
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(i) l s p s m - 1  
In this case, V,, has states with zero norms and, by delinition, the first zero-norm state 
appears at the ,uth level. 

T Matsuzaki and T Suzuki 

It is important to notice that the state Ih,"; p )  is a null state. Indeed, by acting %, on the 
state, it vanishes owing to the relations (2.11) and (3.3). Moreover, 
( (%l)"l [m]!)~h,v;p)  vanishes becausep<m that is to say, the corresponding state does 
not exist in V,". The weight of the state lhpv;p) is h,,+p=h-,,. Thus the null state 
lh,,.;p) generates the submodule V,, in the original module V,, . In order to obtain an 
irreducible module, we have to subtract the submodule generated by the null state, 
This is not the whole story, however. Some formulas which are useful for the next 
arguments are 

[%,."t2k"+P-Il=o k>O 

h, ,?+ ux0 + p = h - p . v + ~ n  = h,, + km + p 

[2h-p.u+un+ ( m - d  - 11 = O  

(3.7) 

(3.8) 
k*O 

h-,.+Dn+m -P = h,.u+Uktl)n =h,,..+ ( k +  1)m. 
The first equation in (3.7) guarantees that the state Ihp.v+2*n;p) is the first null state in 
the submodule V,.vtlknr that is, it is annihilated by the actions of 3, and Sey/[m]!. The 
second line in (3.7) indicates that the state lh,,,vt2*n;p), whose weight is the same as 
that of the state at the (km+p)th level in V,,, generates a new submodule V-,,,+% in 
V , , y + ~ .  . Similarly (3.8) means that the new submodule V,,v+2(k+l* is generated by the 
state Ih-,,y+2x.; m -p) ,  which is the first null state in the submodule V-p,vtZknr and that 
this state appears at the (k  + 1)mth level in the original module V,,". According to the 
above discussions, we obtain the embeddings of submodules in the original highest 
weight module: 

Hence the irreducible highest weight module over the highest *,eight state Ih,,,"; 0) can 
be obtained by the correct subtraction as follows: 

V,,"+ V-p."-+V,."+Zn-*V-p.r+lr'. . .+ V,,"+%-+ V-,."+2kn' V,."+Z(ktl)"-+' . . 

OI 

VEy= @ vj:; (3.9) 
k-0 

where Vz?= V,,v+2x. - V - p , v + ~ n .  The irreducible module is depicted in figure 1 ,  where 
each state in the module V?,. is represented by a rigid line or a dotted line. The 
irreducible module VEv consists of only the rigid lines. Note that all subtracted states, 
corresponding to dotted l ies ,  have zero-norm but they are not necessarily null states. 
The upward and downward arrows stand for the actions of Se, and Se-, , respectively, 
and curved arrows correspond to the actions of %:,/[m]!. 

Now we have obtained the irreducible highest weight module V;Tv with 1 e p e  
m - 1. Finally we calculate the character of this representation. 

a;.&) = c l-n - 2 - - - pw+zhn *h-M."+un &.. (1 
(3.10) 1-x (l-x)(l-xm) k = O  k=O 

(ii) p = m 
In this case, the module V,, does not contain states with zero-norm. The module is 
irreducible of itself and is the same as the classical ones except the fact that the states 
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m 
m.1 

2m 

Figurel. The irreducible highest weight module when 1GpSm-1, All states are 
described by rigid or dotted lines. Null states which must be subtracted are represented by 
dotted lines. 

at the (km)th level ( k a l )  is generated by the action of (%‘-,)‘“l[m]! on the state 
Ih,,”; (k -  1)m) instead of the action of on Ihp.”; km- 1). In figure 2, the highest 
weight module V,,” with p = m is described. The character in this case is the same as 
the classical one: 

(3.11) 

In this section we have ignored discussions of positivity of the states, namely, unitarity 
of the module. This is detailed in the next section. 

4. Discussion of unitarity 

Now we are at the stage of studying the unitarity of the irreducible highest weight 
module obtained in the previous section. It will turn out that the values of the 

mgure2. The irreducible highest weight module whenp=m, 



4362 

parameter p and 11 are more restricted. Our statement is summarized in the following 
theorem: 
Theorem 5. Assume g=e"""'"' and let A be the maximal integer which does not 
exceed mln. The cases in which unitary highest weight module exists are: 
( i ) I fm,nEZN-l  

T Matsuzaki and T Suzuki 

p , v ~ 2 N - l  l q 4 S A + l  
[or p = m  V E Z N - 1  

whenn#l 

when n = 1 p ,  V C ~ N -  1 1 GpSm.  
(ii) If mEZN, n EZN- 1 

VEZN- 1 
p = m  VEZN-1 

1 < p  < A +  1 
whennf  1 

whenn=l  p ~ 2 N  VEZN-1 1 s p S m .  
(i i i)IfmeZN-l,nEZN 

p = m  ve2N. 
The remainder of this sectionis devoted to the proof of this theorem. 

The following consideration makes the discussion of the signs of all the states in a 
module easy. Let E and E(r) be the signs of the states at the mth level and at the rth 
( l s r s p -  1) level, respectively. Then the sign of the (mk+r)th ( k a l )  level is 
E* x E(r). Therefore, we have only to check the signs E and &(r). The norm of the state 
at the mth level can easily be calculated as 

ll14,~v; m)1I2= ((-)"+YY(-) n 1 - - p [ ( - ) v + n ~ ]  (4.1) 

where we used the relation [m +XI = (-)"[XI and [-XI = -[XI. Careful calculation of 
the combination [Zh,," + p  - l]/[m], in which both the denominator and the numerator 
are zero, gives the last factor {. . .} in (4.1). From (4.1) we obtain the following lemma: 
Lemma 6. The norm ~ ~ ~ l ~ ~ , ~ ;  m)]F is positive if m, n and p, v satisfy 
(a) if m, n e 2 N - 1 ,  t h e n p c v ~ 2 N .  
(b) if m e2N and nE2N- 1, then p E 2N and VVE N. 
(c) if mc2N- 1 and n~ ZN, then v e  ZN and V p  E N. 

According to the discussion given above (4.1), the next task is to examine the signs 
of all the states lying between the highest weight state and the state at the ( p  - 1)th 
level. The norm of the state Ihp."; r) (1 C r S p  - 1) is given by 

(4.2) 
When q =  em(""), the q-integer [XI is written as 

q' - q -' sin (nxnlm) 
q - q-l sin (zcxnlm) 

[ X I = - - - -  - (4.3) 
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In the following, we will consider two cases (A) n # 1 and (B) n = 1, separately. 

(A) nZ1 
Taking into account that the denominator in (4.3) is positive, the sign of [x] is 
classified as follows: 

2km (2k + 1)m 
(a) [x]>O for (--)+lsxr( ) k*O 

(b) [x ]<O for ( )+lexs(--) k a l  
(2k-  1)m 2km 

where we use$e symbol (t) as the maximal integer which does not exceed E .  In 
particular, A = (mln). It should be noticed that 

(‘k ”’”) - r;) = tfi or A+ 1. (4.4) 

Equation (4.4) allows one to give the following classification (1)-(3) according to the 
value o f p ( 1 s p r m -  1): 

(1)p- 1 r A  
In this case, all q-integers both in the numerator and in the denominator on the last 
term of (4.2) are positive, then the sign of the state lhp,r,,), denoted as E(h#,,; r ) ,  is 

&(hfi.Y; r)  = ((-)”+I)’ (4.5) 
Therefore the sign ~ ( h ~ , ~ ;  r) is positive for arbitrary r if and only if Y is odd. 

In this case, three cases occur according to the values of r and p ,  

We have to consider two cases, r s A  and r = A +  1. When r e m ,  negative signs come 
from all the q-integers in the numerator, then 

(4.6) 

( a ) r s p - 1 - A  

&(hp,”; r) = ((-)“+I)’(-)’= ((-)”)’. 
Inthecase r = A + l ,  whichoccursonly whenp-l=(2mln) with(2mln)=2A+l, we 
have an additional minus sign coming &om [ r ]  = [A + 11 in the denominator. Then 

e(hp, , ;&+l)=-( ( - )”)m+l .  (4.7) 
(b) p - A s r s m  

The q-integers [p-  11, [p-2], . . . , [A + 11 in the numerator provide negative signs, 
then 

&(hp,,; r) = ((-)”+’)’(-)”-’-’. (4.8) 
(c) A +  I s r e p -  1 

We have more negative signs from the q-integers [A+ 11, [A+2], . . . , [ r ]  in the 
denominator in addition to the case (b), then 

(4.9) 
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Putting these cases (a)-(c) together, we have to conclude that there are no numbers 
for p and Y such that all the states lhP,7; r )  (0 S r S p  - 1 )  have positive norms. 

( 3 )  ( k m / n ) + l ~ p - l < ( ( k + l ) m / n )  for k a 2  
The situations for these cases are the same as the case (2), that is, we cannot find any 
numbers for p and Y which give positive &hP,.;r), V r ,  O S r S p - 1 .  Let us, first, 
examine the case k E 2N + 1. Assume that y = p - 1 - (kmln). 

In this case, as in the case (2a), we have to consider two possibilities, i.e. r e m  and 
r=fi+ 1. I f  r S f i ,  all the q-integers in the numerator are negative whereas ones in the 
denominator are positive, then 

T Matsuraki and T Suruki 

(a) O<r<y 

~ ( h P , ~ ; r ) = ( ( - ) " + ' ~ ( - ~ = ( ( - ) " ~ .  (4.10) 

When r= f i+ l ,  which occurs only when p - l = ( ( k + l ) m / n )  with ( ( k + l ) m / n ) -  
(kmln) = rh + 1, an additional minus sign arises: 

E(&; f i+  1 ) =  -((-)")"+I. (4.11) 

Negative signs come from q-integers in the numerator [ p - 11,  [ p - 21, . . . , 
[(km/n)+ 11 and, the number of minus signs is y ,  then 

r) = ((-)"+'y(-)y. (4.12) 

We can deduce only from these two examinations that it is impossible to fmd p and v 
such that ~ ( h ~ , ~ ;  r)= + 1 ,  Vr. 

When k is even, the same situations happen. From the above information (1)-(3), 
we can conclude that, when 1 C p  S m  - 1 ,  all the states IhP..; r) are positive definite if 
and only if 1 S p  <fi + 1 and Y is odd. 

In this case, the norm of the state lhP.7; r) is given by 

(b) y + 1 6 r S  f i  

(4 )p=m 

=((-y+"y. (4.13) 

Therefore, the condition that all the states ]hP,?; r) are positive definite is that 

n+vc2h' (4.14) 

( B ) n = l  
Noticing that all q-integers [x] for x s m -  1 are positive, we can easily see that all the 
states \hP,v;r) (1 S r C p  - 1 )  have positive norm if Y is odd. Moreover, (4.13) holds also 
for the case n = 1 ,  then all the states Ih,& r) have positive norms when v is odd. 

Putting together the above investigations (A.1)-(A.4) and (B) taking lemma 6 
into account, we have reached theorem 5. 

Now we have obtained all unitary irreducible highest weight modules for non- 
compact U,(su(l,l))-module, V F  is obtained as a direct sum of the unitary 
irreducible highest weight modules as follows: 
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(A) n f l  
(1) (m, n)E (UV- 1,UV- 1) 

(4.15) 
pew-I " E W - I  

1spsIhi I 

( 2 )  (m, n )  E (UV, m- 1) 

(4.14) 

(4.17) 

(4.18) 

(4.19) 

5. Two-parameter structure of the module V:: 

We have obtained the unitary completely reducible U,(su(l,l))-module when q is a 
root of unity. However, there remains the question why we need two parameters p 
and Y in order to specify a highest weight state. We have introduced the parameter p 
in order to designate the level at which the first null state appears. On the other hand, 
we do not have a transparent meaning of the parameter Y .  As a final discussion, we 
make the two-parameter structure of the highest weight module clear. It turns out that 
the module VEy can be split into two unitary modules, one of them parametrized byp 
and the other by v. 

First of all, we should notice the following feature; on the module TUC'= 
V:c,"/Z2, the universal enveloping algebra Uq(su(l,l)) can be written as a tensor- 
product of two algebra. 

U,(SU( 1.1)) = 04@ U(su( 1,l)) (5.1) 
where i', is generated by 2*,, YC with the relations (2.2) (2.3) and U(su(1,l)) is a 
classical associative algebra whose generators are 

satisfying the relations 

[%" 2 = (n - " + m  n=O, +1 (5.3) 
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and being equipped with a classical Hopf algebra. That is, on the module YucR, we 
can obtain the following homomorphisms: 

T Matsuzaki and T Suzuki 

A(%, , )=%n@l+l@~n 

E(%") = 0 

Y(%J = -30 ' 

The reason why we deal with TucR which is Vi:: modulo Z, is to remove the 
double-valuedness which arises from q"= (-)". We can prove (5.1) by calculating the 
commutation relations among these generators, %*,, SI and %,,, %o, restricted to 
YucR, Equation (5.1) derives the following theorem which states the structure of the 
unitary completely reducible U&u(l,l)) module Vucn. 

Theorem 7. (I) TUC' is isomorphic to a tensor product of two vector spaces as follows 
(this structure was first derived by Lusztig for the finite dimensional representation of 
uq(~i(z. c)) ~ 5 1 ) :  

V U C R  V @  V" (5.4) 

where 

v=e vpev" V" = @v; 
bi 1") 

i', andsu(1,l) act onTucRas o,@l and l@su(l,l),  respectively. The vector space U,, 
(resp. V:) is a unitary irreducible highest weight module whose highest weight 
depends only on p (resp. v ) .  The parameters p and v with which the completely 
reducible modules are constructed are given according to theorem 5 .  
(2) Each unitary irreducible highest weight module V: is equivalent to the unitary 
irreducible highest weight representation of the classical Lie algebra ~ ~ ( 1 . 1 ) .  
Therefore, each irreducible highest weight module V$ is infinite dimensional. 
(3) Each unitary highest weight module v,, is equivalent to the unitary irreducible 
highest weight representation of U,(su(Z)) [18]. 
(4) The unitary irreducible highest weight modules v,, and vm are of finite dimension 

dim v p = p  dimvm=m. 

(5) The unitary completely reducible U,-module p i s  finite-dimensional, that is to say, 
the number of highest weight states in is finite. In fact, it is obtained from (4.15)- 
(4.19) by 

when n+ 1 
m when n = 1. 

In what follows, we will investigate the modules v and V" and the actions of and 



Unitary representation of Uq(su(l,l)) with q a unnily root 4367 

su(1 ,l) in detail. To this end, it is convenient to express the state Ihp,"; km + r) in terms 
of 2Ll and %,. Using the relation 

1 k 

[km + r ] !  

we can rewrite the state lhp,v; km + r) as 

(5.5) 

Therefore, on the module TUCR, i.e. VE:: modulo Z,, we can write 

where 
Ih#,"; km + r) = Ih; -6 + r)@ lhc; k) (5.7) 

We will define the states Jh,; O).l and Ih; -6) later. 
n=O, Cl act. The highest 

weight state Ih,; 0)" is defined by the relations %olh,; O)d=h,Ih,;O)d and %41/hc; O)=O 
and its weight h, is defined as a go eigenvalue of the original highest weight state 
15."; 0). Therefore, h, is the just half of the norm of the mth state [hP,"; 0) 

Let us begin with the investigations of V" on which 

l v  
e 2 n  

h =--. 

The highest weight module V: consists of the states Ih,; k)' defined by (5.9), 

(5.10) 

v:= [ 1;; k) Ik=O, 1,2,. . . . I 
The action of %lo are obtained as 

~ _ , I h ~ , k ) " = ( k + l ) ( h , ; k +  ly' 
Ih,; k)"= (2h,+k - l)Ih& k -  1y1 (5.11) 

Note that the module V: is unitary and irreducible as far as the Lie algebra su(1,l) is 
concerned and is non-compact space. Now, the meaning of the parameter v becomes 
clear; it is related to the highest weight of the module V t  by the equation (5.10). The 
completely reducible su(1 ,l)-module VE' is obtained by a direct sum of V: with respect 
to v: 

%Ih,; k)'l=(h,+k)(h,; ky'. 

VCl=@V$ 

where the allowed values for v are given in theorem 5. We next investigate uq-module 
V. The state Ifi; -h) introduced in (5 .8 ) ,  which we call the 'lowest' weight state, is 
defined by the relation X l h ;  -h)=q-fi lh; -h) and gl1h; -h)=O. h is defined by 
means of the relation q"+."=q-'"~"q: that is 

h = i ( p - l ) .  (5.12) 
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We see from (5.10) and (5.12) that the original highest weight h,," is written as 
hP..= h p  - h. The lowest weight module V, consists of the states lh; -h + r) which are 
defined by (5.8): 

T Matsuzaki and T Suzuki 

V,,={lh; -h+r)lr=O, 1,. . . ,2h}. 
The actions of the generators of oq on a state 16; -6+ r )e  v, are obtained as follows 

%-llh; - I ;+r)=[r+  1]1h; - h + r + l )  (5.13) 

Zl1h; -h+ r )=  - [ ~ h  - r +  1]1h; -h+ r -  1) (5.14) 
~ t l h ;  -ii + r) = q-'+,Ih; -6 + r) .  (5.15) 

The extra minus sign in the right-hand side of (5.14) indicates that we should impose 
%Ll = -XI on the ?-conjugation rule in order to obtain positive norms lllh; -6+r)llz. 
This ?-conjugation rule and the relations (2.2) and (2.3) guarantee that v,, is just the 
unitary irreducible U9(su(2))-module. The dimension of V, is 

dim Vfl=2h+ 1 =,U. (5.16) 
The completely reducible 09-module v is described as a direct sum of the highest 
weight module V,, with respect to the parameterp. 

v=€Bv,. 
P 

(5.17) 

The allowed values forp are given in theorem 5. It should be noticed that Vis of finite 
dimension, that is to say, the number of the lowest weight states is finite. Remember 
that this finiteness originates in the unitarity of the highest weight module Vfl,". 

Finally we would like to stress that the non-compct nature of T:!: stems only from 
the module VE' which is equivalent to the unitary highest weight representation of the 
classical Lie algebra su(1,l) and the quantum group nature appears only in the finite 
dimensional module 9. 

6. Conclusion 

In this paper, we have investigated the structure of the highest weight representation 
of U,,(su(l,l)) when q is a root of unity. The requirement of the unitarity claims the 
existence of zero-norm states in a highest weight module. Without zero-norm states, 
we have states whose norm diverge. This is the point where the difference between 
compact quantum groups and non-compact quantum groups appears. For compact 
quantum groups, there are the highest weight modules in which no zero-norm states 
exist [19]. We saw that the requirement of the existence of zero-norm states makes 
the representations of U9(su(l,l)) discrete series. More precisely, we need two- 
parameters in order to specify a highest weight module. The two-parameter structure 
is meaningful. In fact, the U&su(l,l))-module is isomorphic to a tensor product of two 
modules Vc' and v. One of them, V", is the unitary completely reducible module on 
which the classical Lie algebra su(1,l) acts. This is a direct sum of unitary irreducible 
highest weight modules whose highest weights are specified by one of these param- 
eters. Each highest weight module is equivalent to the unitary irreducible highest 
weight module of su(1,l) and, therefore, isof infinite dimension. The other module, v 
consists of afinife number of unitary irreducible highest weight modules whose highest 
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weights are specified by the other parameter. Furthermore, each of these unitary 
irreducible modules is equivalent to the unitary irreducible highest weight module of 
Uq(su(2)) and, therefore, is finite-dimensional. Thus, the non-compact nature of 
unitary U,(su(l,l))-module inherit only from the former V", and the quantum group 
nature appears only in the latter mode in which the number of the highest weight 
states is finite. 
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